In my first post in this series I shared my thoughts on my motivation for the design the observational study, noting that discrimination was a key idea I wanted to explore. In my second post in this series I shared some of the tools and my thought process in designing the structure of the interleaved homework assignments. In my final post on my journey (for the season, anyway), I will share some preliminary results, some student solutions that I found interesting, and my overall thoughts on what I learned.

**Preliminary Results**

First, here are the overall trends in the assessments from this term.

Each solid line represents one of the 14 students who were involved in the observational study. The dashed black line represents the average progress of the class. A few things should be immediately apparent:

- The black line shows a general decline over the semester of about 20% if one observes Quiz #1 first and the Final Exam last. However, if one were to remove the quizzes, one would see a decrease of 15% from Test #1 to Test #2, followed by a slight increase of about 5% from Test #2 to the Final Exam. More discussion on this below.
- What the heck happened to that poor blue student? It might be that H found the interleaved structure of the course and homework overwhelming and needed more time for comprehension compared to the other students. Is it possible that students with special considerations benefit more from the structure of a blocked approach? I haven’t read much on this, but please feel free to share some research if you know about it.
- Aside from a few students who remained close to the top for the assessments, many students saw a drastic decrease around Test #2. Why is this? Test #2 contained 86 points dedicated to all the various integration techniques (substitution, integration by parts, strategies for trigonometric integrals, trigonometric substitution, partial fractions) and I told my students to do whatever questions they wanted to in order to obtain 50 marks. Perhaps this choice was too much, and a more structured test would have been better-suited.

If there are other items that are particularly noticeable, let me know and I will reflect a bit more on why that might be the case.

I also compared the scores of the 14 students on Test #1, Test #2 and the final exam from differential calculus to integral calculus. Since Test #2 was so varied from the structure of differential calculus, I decided to exclude it here (although there was a 10% decrease). Test #1 saw a change in scores of about 10% and the final exam also showed a slight increase in score of about 2%.

**Student Solutions**

**Discussion**

First and foremost, while I did select an interleaved approach due to the hopes that it would make integral calculus a bit easier in the long run by allowing students to discriminate between integral techniques, I also noticed that students’ mindsets changed a bit this semester. In differential calculus, where they might not venture an answer, in integral calculus they would try substitution or integration by parts, even if it led them down a dangerous path. There was a difference in both effort and execution. They persisted and often came up with insightful solutions. It was also true that there was less cramming for tests and the exam. In fact, N came up to me and said “I realized that I had to study some material less because I knew how to tackle these problems. It’s kinda fun.” It would be interesting to follow-up with them over the summer months to see how much of this knowledge they retained.

From my perspective, I know that any fluctuations in grades are highly likely due to random chance factors, and not necessarily due to the interleaved practice. This said, it was an interesting first-go at something this big and I definitely want to try it again. The main difficulties I had were:

- Time. It took a lot of time to work through the homework solutions in class. Due to the time I lost, I had to teach differential equations in the lab portion of the course, and lost time discussing some aspects of power series. I’m not sure I would have necessarily changed this, as many students appreciated the extra time spent on solving questions and being able to ask specific questions.
- How do I measure whether or not the interleaved practice actually helped? I’m not sure that I effectively can do this based on the way the study is designed, but here is a thought. When a student tackles a question, either they use the correct technique or they don’t. What if I looked at the proportion of times a correct technique was used on Test #2 and compare it to the proportion of times a correct technique was used on the final exam? Maybe this would be helpful.